
Platform 
Engineering 
Interview Guide 
for Developers

Understanding your audience  

to build a better roadmap

This guide uses the Jobs, Pains, Gains framework and the 

Jobs-to-be-Done (JTBD) methodology to help platform 

engineers gather insights on the type of developer platform 

they should build. The focus is on identifying developer needs, 

pain points, and desired outcomes to inform the design and 

implementation of a new Internal Developer Platform.




Section 1 Introduction & Context Setting

Section 2 Developer Jobs (Jobs-to-Be-Done)

Section 3 Pain Points, Challenges, Opportunities

Section 4 Ideal Platform Features (Gains)

Section 5 Validation and Prioritization

Section 6 Closing the Interview

Post-Interview Analysis

Table of Contents

cortex.io



cortex.io

Section 1

Introduction & Context Setting

Objective: Set the stage for the interview by providing context and explaining  

how the feedback will be used.

JL Introduction:

n "We’re looking to design a new internal developer platform tailored to your  

needs, so today we’ll discuss your workflow, challenges, and what would make 

your job easier."

zL Set the agenda:

n "I’ll be asking about the tools you use, your development process, areas of 

frustration, and what features or services would help you work more effectively."

§L Explain the outcome:

n "Your feedback will help us create a platform that improves your productivity, 

automates common tasks, and integrates the tools you need."

Section 2

Developer Jobs (Jobs-to-Be-Done)

Objective: Identify the tasks developers are trying to accomplish and how the platform 

can support their workflow.

JL Core Development Objectives:

n “What outcomes are you expected to deliver in your role?�

n “Which outcomes do you feel like you’ve been able to achieve with little friction? 

(i.e. you feel you’re doing well at this particular goal, and are happy with how 

much effort it requires for you to hit these goals�

n Irrespective of what it would take to do so, which outcomes do you wish you  

were able to deliver more comprehensively, and/or faster?”



cortex.io

�� Development Process:

4 "Walk me through your typical development cycle from coding to deployment. 

What are the major steps? Who do you interact with throughout?”

J� Tool Preferences and Expectations:

4 "What tools are you using at each stage of development?`

4 "What tools are non-negotiable for your workflow? Why do you prefer them?"

o� Security and Compliance

4 "How do you ensure code and infrastructure comply with security standards? 

What would make this easier for you?`

4 Example tools: Built-in security checks using tools like Snyk or Aqua Security, 

automated compliance scans in CI/CD pipelines°

4 “To what extent are you responsible for security compliance for your app?~

4 Example responsibilities: “I must audit my open source dependencies on each 

build.” or “I have to scan all bespoke code with CodeScene”

É� Error Handling and Rollbacks:

4 "What’s your biggest concern when something goes wrong in production?  

How should the platform help you resolve it?`

4 Example features: One-click rollbacks, integrated incident management tools  

like PagerDuty, detailed error logs.

Section 3

Pain Points, Challenges, Opportunities

Objective: Understand the pain points developers face in their current workflow  

to ensure the new platform addresses them.

;� Onboarding:

4 “How did you find your onboarding experience? When did you feel like you  

had all the information, tools, and templates you needed to operate  

completely independently?~

4 “Did anything in your onboarding unlock greater speed in gaining context?”



cortex.io

 “Did anything about your onboarding feel particularly painful or confusing?” 

0/ Current Bottlenecks:

 "Where do you encounter the most friction or delays in your workflow? Please 

answer irrespective of whether you believe there’s a solution to that problem.E

 “How has that changed over your time working here? Was there an “unlock” 

moment you can recall?E

 Example issues: Hard to find information, slow CI/CD pipelines, manual 

configuration of environments, troubleshooting deployment failures.

t/ Time-Consuming Tasks:

 "What tasks feel like they take up more time than they should? Where do you feel 

you're wasting time?�

 Example tasks: Finding templates, reconfiguring build pipelines, waiting  

for secrets allocation, repetitive testing steps.

¨/ Tool Challenges:

 "Are there any tools you’re expected to use that you think are less useful,  

or maybe even slow you down?E

 "Do you struggle to integrate different tools in your current setup? If so, which 

ones?�

 Example issues: Jenkins not playing well with Docker, lack of visibility into 

Kubernetes clusters, or difficulties connecting monitoring tools like Prometheus 

and Grafana.

÷/ Collaboration and Communication Barriers:

 "How easy or difficult is it to collaborate with other teams? Does the current 

tooling support cross-team collaboration effectively?�

 Example issues: Disjointed communication between Ops and Dev teams, unclear 

ownership of services, missing documentation.

;/ Work Satisfaction

 “How satisfying is it to do your work on a daily basis?E

 “What are some improvements that could be made to help your work become 

more satisfying or fulfilling?E

 Example responses: “I wish that there were less approval gates.” or “I have too 

many outbound dependencies.”



cortex.io

Section 4

Ideal Platform Features (Gains)

Objective: Identify the features and capabilities developers want in a new platform, 

focusing on what would make their work easier and more efficient.

QM Desired Platform Outcomes:

� "What do you think should be the main goal of a developer platform? Increase 

speed? Reliability? Alignment? Something else?k

� Example outcomes: Fast feedback loops, easy rollback mechanisms, visibility  

into application health.

�M Feature Wishlist:

� “If cost/set-up time/training weren’t an issue, are there any tools you wish  

you had at your disposal?k

� "If you could build your ideal developer platform, what features would it have?¯

� Example features: Pre-configured CI/CD pipelines, automated infrastructure 

provisioning (e.g., Terraform), continuous alignment checks (e.g., Cortex).

åM Automation Opportunities:

� "What processes would you like to see fully automated?¯

� Example automations: Automatic environment provisioning, deployment 

validation, continuous security scans.

:M Self-Service Capabilities:

� "How important is it for you to have self-service access to resources like 

environments or databases? What would that look like?¯

� Example tools: Pulumi for infrastructure as code, a self-service portal for 

environment creation.

�M Monitoring and Troubleshooting Tools:

� "What tools or features would help you identify and resolve issues faster?¯

� Example tools: Integrated monitoring and logging with Grafana and Prometheus, 

centralized dashboards for service health metrics, real-time alerts.



cortex.io

�� Customization and Flexibility:

O "How much customization do you need in the platform to tailor it to your team’s 

specific workflows?K

O Example preferences: Flexible CI/CD pipeline configurations, ability to add 

custom scripts to deployment processes.

Section 5

Validation and Prioritization

Objective: Prioritize the pain points and feature requests to focus on what will deliver 

the most value to developers.

�� Feature Prioritization:

O "Of all the opportunities we’ve discussed, which ones would have the most 

immediate impact on your productivity?K

O Example priorities: Automated deployments, real-time monitoring,  

pre-configured pipelines.

Ì� Top Pain Points to Address:

O "Which of the pain points we talked about should we fix first? What would make 

your day-to-day work easier right away?K

O Example issues: Eliminating manual environment setup, reducing build times, 

improving deployment visibility.

B� Biggest Workflow Improvements:

O "How would solving these challenges change your workflow? What would be the 

biggest improvement?K

O Example improvements: Faster time-to-deployment, fewer errors in production, 

more efficient testing processes.



cortex.io

Section 6

Closing the Interview

Objective: Wrap up the interview and set expectations for next steps.

BE Final Thoughts:

e "Is there anything we haven’t discussed that you think is critical for the platform?"

zE Thank You & Follow-Up:

e "Thank you for your input. Your feedback will directly influence the platform 

design, and we’ll keep you updated as we progress."

Post-Interview Analysis

After conducting the interviews, the data collected should be analyzed to identify  

key patterns and insights that will drive the platform design. Here's how to interpret  

the results and determine what to build:

BE Identify Critical Developer Jobs

Look for recurring themes in developer tasks that must be supported by the platform.

B Example: If multiple developers mention issues with setting up environments, the 

platform should prioritize self-service provisioning and environment management.

zE Categorize Pain Points

Group pain points into categories like CI/CD inefficiencies, infrastructure challenges,  

or collaboration barriers.

B Example: If slow CI/CD pipelines are a major frustration, focus on optimizing build 

times, possibly by introducing parallel processing or caching techniques in Jenkins.



cortex.io

�� Analyze Desired Features

Pay attention to the features and tools developers consistently request.

W Example:  If automation is a recurring theme, prioritize features like automated 

deployments (e.g., with ArgoCD) or infrastructure as code (e.g., Terraform) to reduce 

manual intervention.

h� Map Gains to Impact

Rank the desired platform features by their potential impact on developer productivity 

and satisfaction.

W Example: If real-time monitoring and troubleshooting were mentioned often, consider 

integrating tools like Prometheus and Grafana to improve visibility into service health.

µ� Prioritize Based on Frequency and Importance

High Frequency, High Impact: Features or issues mentioned frequently and with a high 

impact should be top priorities.

W Example: If multiple teams are frustrated with the manual setup of environments, 

addressing this with automated environment provisioning tools like Terraform  

or Pulumi should be an immediate focus to improve productivity across teams.



cortex.io


